INTRODUCTION
- The paradigm for monitoring patients’ vital signs has remained unchanged since the 1970s.
- After being detected by a sensor, vital sign values are displayed on a monitor.
- Serving as a basis for clinical decision making, it can lead to information overload and alarm fatigue in ICUs – factors that can cause fatal medical errors.
- To ease the burden of information overload, multiParameters graphically represents the multivariate relationship between vital sign parameters, in a way that allows the viewer to see both trends and physiologic state space.
- In addressing the serious issue of alarm fatigue, multiParameters will offer suggestions for alarm parameters based on physiological state of individual patients.

BACKGROUND
- Single Sensor Single Indicator (SSSI) provides large volumes of data from multiple sources.
- Patient variables are intermittently collected and recorded as single numbers in a paper chart or computer database.
- Clinical staff screen patient data for important events, and rely on clinical experience to synthesize the information and to formulate differential diagnoses and treatment plans.
- 80-90% of alarms in the ICU are false positives.
- Current practices accept all sources of alarms
- Alarm noise pollution leads to alarm fatigue which facilitates medical errors.

SOLUTION
- **Situational awareness**
 - Perception
 - Comprehension
 - Prediction

 - Used principles learned from Dr. Tim Buchman and prior work by Carlos A. Renjifo to develop an algorithm that produced graphical representation of patient’s vital sign parameters.

 - Beginnings of our attempts to visually display physiologic state space in a patient with sepsis.

 - Currently parameter thresholds for each sensor can be adjusted to meet patient's individual physiology. However, even when thresholds are adjusted, they are not done so in a standard or scientific way.

 - Our solution: Automatic recommendation for alarm settings. A function that is based on the trended data from the patient gives a proposal for the alarm threshold, which the nurse can then accept or reject.

 - Two variables: Heart Rate, HR (bpm) - Mean Arterial Pressure, ABP (Invasive, mmHg)
 - ABP/HR plot with circles representing state space determined by cluster analysis. These state spaces serve as the basis for new alarm thresholds.

FUTURE
- To increase the value and accuracy of graphically represented physiologic state space we can introduce another variable and make display 3D.
- We can better identify and display distinct physiologic state spaces by introducing variables such as heart rate variability – a parameter generated from the complex systems paradigm.
- Utilizing information about relationships between variables will allow us to move beyond use of single variable limit alarms.
- Ultimately, by using real-time patient data to create a continuously updating representation of physiologic state space, we hope to improve situational awareness and decrease the number of false alarms in the ICU.

REFERENCES
- Patient Monitoring in Critical Care: Lessons for Improvement, Frank A. Drews
- On-line adaptive trend extraction of multi-physiological signals for alarm filtering in intensive care units, Chapovsky & Gerlach
- On-line adaptive trend extraction of multi-physiological signals for alarm filtering in intensive care units, Chapovsky & Gerlach
- Real-Time Development of Patient Specific Alarm Algorithms for Critical Care, Ying Zhang
- Nonlinear dynamics, complex systems, and the pathobiology of critical illness, Tim G. Buchman
- Real-Time Development of Patient Specific Alarm Algorithms for Critical Care, Ying Zhang
- On-line adaptive trend extraction of multi-physiological signals for alarm filtering in intensive care units, Chapovsky & Gerlach
- Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis, Ghazanfar et al.
- Novel representation of physiologic states during critical illness and recovery, Buchman
- Visualization of Trends and State Space to Individualise Alarm Parameters, Adriana Fuentes, Jeffrey Jopling, Karsten Jensen, Lars Christensen

SPECIAL THANKS TO
Dr. Timothy Buchman, Anton Burykin (Ph.D), Dr. Ellen Do, Mr. David Cowan, Dr. Craig Zimmering, Dr. Jeremy Ackerman and the HEF-class